Journal of Magnetic Resonanéd1,239-255 (1999)

) ®
Article ID jmre.1999.1905, available online at http://www.idealibrary.conl ILE %I.

Calculations of Multipulse Sequence in NQR of Spins 3

Christophe Odin

Groupe Matiee Condense et Mateiaux, UMR 6626 au CNRS, UniversiRennes |, Campus de Beaulieu, 35042 Rennes Cedex, France

Received February 17, 1999; revised August 2, 1999

The general formalism of the interaction representation with
respect to an operator which is its own inverse is developed and
applied to pure NQR of spins | = 3. Under the assumption of no
relaxation and no dipolar coupling, it is shown that the calculation
of the response to pure NQR multipulse sequences can be per-
formed with the same concepts used in high field NMR, such as
coherence pathways. All the tools and mathematical expressions to
predict the time evolution of the signal created by a pure NQR
multipulse sequence are presented explicitly. It takes into account
the off-resonance irradiation as well as the angular dependence of
the excitation and detection for every value of the electric field
gradient asymmetry parameter. Particular attention is devoted to
the powder average, which is performed via a probability function
derived analytically for the first time, leading to a drastic reduc-
tion of simulation times. The theory is illustrated by the study of
the optimization and excitation bandwidths of one- to three-pulse
sequences and compared to experimental results on Chloranil. We
show that the three-pulse “stimulated echo” sequence gives a more
uniform excitation profile than the traditional two-pulse echo
sequence for powder samples. Thus, the “stimulated echo” se-
quence could be useful to cover a large spectrum when the exper-
iment duration, or the signal to noise ratio, are not critical param-
eters. Analytical expressions for the nutation spectra obtained by
one or two-pulse sequences are also derived for the first
time. © 1999 Academic Press

Key Words: NQR; quadrupolar nuclei; interaction representa-
tion formalism; excitation bandwidth; powder average; nutation
spectra.

INTRODUCTION

imental techniques available to measure the quadrupolar inte
action, magnetic resonance spectroscopy technigues are par
ularly appealing because of their large and usually simpl
applicability. Moreover, one can have access to a large range
time scales, an important feature in the study of phase tran:
tions or of disordered systems.

Depending on the strength of the quadrupolar interactio
Mg * (V) compared to the Zeeman interactipB, wherey
is the nuclear gyromagnetic ratio, aBds the external applied
static magnetic field, magnetic resonance techniques can
divided into two limit cases: the high field extreme of nucleal
magnetic resonance (NMR) when the Zeeman splitting dom
nates the quadrupolar interaction (and usually also dominat
the other terms in the Hamiltonian such as chemical shift ar
spin—spin interactions) or the low field limit of Nuclear Qua-
drupolar Resonance (NQR) when the quadrupolar interaction
predominant. The so-callgalire NQR designation being used
when no external static magnetic field is present (except
course the Earth’s magnetic field). In both limits, one can mak
use of perturbation theory to calculate the energy spectrur
which usually leads to severe simplifications of the formalism
whereas the intermediate cadg - (V,z) ~ yB could only be
solved numerically to our knowledge.

Unlike NMR, the main drawback of NQR is that the fre-
quency of the nucleus is not known since it specifically de
pends on the nuclear environment. Once the frequency
found, its variation with external parameters such as temper
ture are almost directly proportional to the variation of the

. . ffective EFG. An important difference between NQR anc
All nuclei with a spinl = 1 possess a quadrupolar mome ?
P P g P ’EMR should be stressed. In NMR, the quadrupolar resonan

Mg, which can interact with the electric field gradient (EFG : )
V., = (32V/aadpB) evaluated at the nuclear site, provided th equenciesny(0, ¢) depend on the polar angles relative to the

site point symmetry is lower than cubic. The correspondin‘ﬁientations of the principal axis system (PAS) of the EFG ¢
quadrupolar interaction energy of the nuclear charge distrigft® nucleus with respect to the laboratory fraried. As a
tion with the EFG is proportional to the produfet, - (V,;). Cconsequence, the components of the tensors can be determi
The EFG tensor\(,,) strongly reflects the symmetry of the sitedy the analysis of rotation patterns about two or three axes
and provides a concise summary of the nature of the cha®esingle crystal. In powder or polycrystalline samples, th
environment of the nucleus (electronic cloud distortion, crystiiterpretation of the spectra is complicated because the i
field, etc.). This makes the quadrupolar interaction a unigt&oadening comes from all the contributions of the differen
probe to study any physical phenomena affecting the charggstallites, possibly convoluted by a distribution of environ-
distribution around a nucleus, as for example phase transitionsnts, chemical shift, and dipolar interactions. Moreover, th
superconductivity, and incommensurability. Among the expegxcitation profile of a radiofrequency (RF) pulse in NMR may
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be strongly distorted if the quadrupolar interaction couldn’t beame way as the NMR response of a single spin of arbitra
neglected compared to the RF power (“soft pulse”). valuel to an Hamiltonian including the frequency offset and

Rotations patterns are also observed in NQR when a snthk radiofrequency excitation. All useful formula are describe
static field is applied to remove the degeneracy of the energytensively. Section IV is completely devoted to the problen
levels. The particularity of pure NQR is that the spatial synef the powder average. An analytical expression for the prol
metry is broken only during the pulses by the application of thability function of the angular factor affecting the effective
RF field. Whereas the frequency of a given site remains camdtation angle of the isochromats and the amplitude of th
stant, both the excitation and the reception of the signal asignal is derived for the first time, which leads us to propose
affected by the relative orientation of the emitting/receivingrastic simplification of the powder average procedure. Sectic
coil with respect to the PAS of the EFG at the nucleus und¥rthen illustrates the calculations schemes proposed in Se
study, modulating both the nutation frequencies of the isochriiens Il and IV with some applications concerning the opti-
mats and the signal amplitude. Therefore, in pure NQR, itis tih@zation and the frequency response profile of one- to thre
amplitude of the signal which is angular dependent. In contrgsilse sequences, and the shape of nutation spectra obtai
to NMR, the line broadening in pure NQR would only reflectrom one- or two-pulse sequences. Simulations are compar
the distribution of EFG (neglecting dipolar broadening and theith experiments performed on Chloranil at ambient tempel
residual external magnetic fields). ature.

In this article, our main concern is pure NQR of spirr 3.
Much work has been devoted to calculate the NQR response of. QUADRUPOLAR INTERACTION OF A SPIN | =}
spin | = 3 systems to strong radiofrequency pulses, using
different formalisms. The earlier descriptions were based onThe Hamiltonian of a single = 1 spin may be decomposed
the solution of the time-dependent Sdtlirger equation (see into four contributions: the pure quadrupolar Hamiltontag
for instance 4)). More recently introduced was a tensor ope@ Zeeman Hamiltoniafd,, a dipolar HamiltoniarH if the
ator formalism §, 6) or a spirg description of sping (7). Other spin is coupled to other spins, and, when the sample is irrac
descriptions using the full matrices were describ8d9|, as ated by a radiofrequency field (RF), the RF Hamiltonkg:
well as iterative procedure based on the evaluation of tfk-3. The NQR domain considers that the norm of the qua
Baker—Campbell-Hausdorff series with computer programsupolar Hamiltonian is much larger than the norms of the
like MAPLE (10). However, to our knowledge, the most usethree other contributions. In the following, we only deal with
formalism seems to be the interaction representation intfifre pure NQR case (no magnetic field applied) and neglect tl
duced by Pratt1, 19, since operational calculations using thelipolar interactions as well as all relaxation phenomena.
density-matrix could be performed. As an example, the nuta-In NQR, it is more suited to quantify the spin operators, {
tion experiment introduced by Harbisen al. (13) to measure |, |} in the principal axis system of the EFG at the nucleus
the asymmetry parameter was calculated on such groundsinder study, the axis being oriented along the direction of the
(14), as well as NQR imaging multipulse sequencé$).( highest eigenvalue in absolute value. Within this conventior
Subjects, such as the study of incommensurate phasestherCartesian representation of the pure quadrupolar part of t
superconducting materials, show very broad NQR specttdamiltonian of a spin = 2 nucleus of quadrupole momelt,
which are not excited totally by a single echo pulse sequenégthen @)
Recently, a procedure to rebuild spectra based on a two-pulse
echo sequence appearetlt) A question which arises is 1 eMgV,, 15 7
whether more complicated sequences using three pulses or  Hq=¢g 5 {3|§ -t (1 |2)}, (1]
more could enlarge the frequency selectivity. Therefore, a good
understanding of the properties of multipulse sequencesv\}ﬁere
needed.

The aim of this work is to present another derivation of the
interaction representation of pure NQR of spins  based on
the fact that the square of the pure quadrupolar Hamiltonian of
a spinl = 3 is in fact proportional to the identity matrix.
Section | introduces the Hamiltonians and tools needed in tisethe asymmetry parameter.
study of NQR, whereas Section Il presents the general form ofThe EFG tensor \(,;) is defined as the second spatial
the matrices in the representation interaction of an operattarivatives of the classical electrostatic potentidlat the
which is its own inverse as well as their main properties. Theicleus siteV,, = (9°V/dadB), where the subscripts and 8
application of this framework to the case of pure SINQR in  indicatex, y, or z components. This tensor is symmetric anc
Section Il greatly simplifies the calculations leading to a fullraceless. Therefore, the two numerical paramejeasd eq=
analogy with the high field NMR formalism. It is shown that/,, are sufficient to characterised the EFG tensor. The values
pure spiré NQR multipulse sequences can be calculated in thgcould be restricted to the interval & n = 1 with the

="y 2]



MULTIPULSE SEQUENCE IN NQR OF SPIN$ 241

convention|V,,| = |V,,| = |V,J. Physically, the asymmetry NQR Z } PAS of the EFG
parameter gives a measure of the departure of the EFG from
axial symmetry. 0 n

In the following, the Hamiltonian are expressed in units of ‘\, o
angular frequenciesi(= 1). The raising and lowering oper- '
ators {I ., |} are, as usual . = I, = il,. Coil

The pure quadrupolar HamiltoniaH, has two opposite | - |
twofold eigenvalues S~

0]
e2q MQ X
- 4 a, (3] FIG. 1. Reference frames of an NQR experiment.
where So, we obtained
"’ Q=5 (30, ® 01+ 130, ® 1 [9]
a=1+5. [4] EES

_ - _ When the sample is irradiated by a linearly polarized radiofre
The corresponding NQR transition angular frequency is  quency field (RF) of phase, the RF HamiltoniarH ¢ is

e’qM,q Hre = 2wgcogwt + @)l.n, [10]

wg=—p & [5]

wherewg: = yB./2, vy is the magnitude of the nuclear gyro-

magnetic ratio and the excitation angular frequency. Vectors

are noted in bold letters. The coil axis is directed along th

unity vector n whose coordinates are {si)Cos@),

sin(®)sin(¢), cosP)} in the PAS of the EFG (Fig. 1).

H = Wq Q [6] The time evolution of the spin-system under either H,

“@ 2 for free evolution, orH = H, + Hge during the pulses, is

conveniently expressed by the density operator which obe

whereQ has the interesting property that it is its own inverséh€ von Neumann equation
that is

A straightforward calculation shows theit, may be rewritten
as

dp
Q2 — |4’ [7] a_ I[p! H] [11]

If the Hamiltonian were time independent, the formal solutior

wherel , will design in the following then X n identity matrix of the Liouville equation would be

In fact, the result that the squareldf, is proportional to the
identity matrix is a direct consequence of the Cayley—Hamilton

— Q- iHt iHt
theorem 17), sinceH, has only two opposite twofold eigen- p(t) = e "p(0)e™. [12]
values.
In the basis of the eigenvalues bf{%, 1, —1, —, the However, this is rarely the case and approximations should |
matrix representation ap is used (perturbation theory, average Hamiltonian thebng)).

When the Hamiltonian has one contribution which is muct
= larger than the others, the approximations to describe the tir

3 0 =y3 0 evolution of the density operator are most conveniently de

_ i Oﬁ -3 0 77@ 8] scribed in the interaction representation whatehe operators
3alny3 0 -3 0 [ are transformed by the following unitary transformation
0 »n3 0 3
A(t) = UA(HU T, [13]

In order to simplify the calculation of matrix products, all the
matrices will be represented by a sum of Kronecker productswhereU = exp(Tt) andU " is the hermitic conjugate df. T
spin3 Pauli matrices (Appendix A). is an hermitic operator.
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Hence, applying this transformation to the density operator TABLE 1
leads to Main Properties of the Operators rp, pa, qa, Q
” (1) Definition of the operators,, pa, ga:
4o = i[p H with Ho= A = T, [14] *~lorQ=0Q

ra=3(A+ QAQ

. . _ Pa =3 (A - QAQ)
The hermitic operatof may be chosen at will to simplify the 0a= 5[0, A]
2 )

resulting effective Hamiltonian. DA = i0,Q = —iQQx
Generally, when a small number of spins are involved, the Tr(p2) = L{Tr(A?) — Tr((AQ)?)}
most simple method to handle the evolution equation is to TH(rapa) = Tr(raga) = 0
expand the density operator in a suitable complete set of
orthogonal basis operators which span the operator space i@jGome relationships for operators related to different matrices B:

which the density matrix evolves and to use the scalar product DAPs — GuC

(A/B) = Tr(AB), and the normjA||> = Tr(A?). [Pa Pol - = [Gar Go] -
In NQR, the interaction representation is defined with re- [ds9a Q] =0
spect to the pure quadrupolar Hamiltonian. For spins$, the [ds, Pa] = 1Q[04, Gs]

propertyQ? = 1, leads to formal simplifications and interest- 7 1Ga ds] - = 0, then(ge, p] = 0

ing relationships which are outlined in the following sectlontg) Some commutators and anticommutators:

Il. INTERACTION REPRESENTATION WITH RESPECT [P, Q1 = 2iq,

TO AN OPERATOR SUCH THAT Q* = I, LGl ~ e 20q

: . . . , , [pA Q] = [aa Q] = [Paga, Q1 =0
The interaction representation with respeciQds defined [sn Q]+ =0fors=porg

by settingU = €9 in Eq. [13]. By expanding the exponential [P Gl =0
in a power series, the explicit expressionldfcan be easily
obtained (see Table 1, cell 4). Consequently, the new opera(fg

A becomes € = cogB) + i sin(B)Q
€'P2,e P = g,cog2B) — pasin(2)
e"p,e” " = p,cog2B) + .sin(2p)

rSome trigonometric functions:

A = ePRAe B = r, + paco2B) + qsin(2B). [15]

Thus, in theQ-interaction representation, an operatdris
decomposed into three operatars p,, andg,, which are
defined in Table 1, cell 1. This table also summarizes the main
properties of these operators. The first operatds evidently A =1+ np{pnaCo92B) + gnasin(2B)}. [18]
the part which commutes witl). The equations of cell 4
provides some solutions of the von Neumann equa}tlon, ahll APPLICATION TO THE PURE NQR OF SPIN | = }
though a complete set of solutions could only be achieved by
expl!cnly taking into gcgou_nt the peculiar n_ature@f(;ee ngxt Let us now apply the formalism developed in the precedin:
section). Note the similarity of commutation relationships of " .

. . } . section to the problem of computing the NQR response to
cell 3 with the commutation relations of the Cartesian spin .. ) : . ) .

. . multipulse sequence using the interaction representation wi
operators, except that the third expression does not make them
réspect to operatd®.

cyclic unlesspag, ~ .Q' Cell 2 indicates that as soon as the Going into the interaction representation defined by choo:
commutators or anticommutators of the typ®,[sg]. are ing

known for one type of operator p or g, then they are known for
the other one.

So, Eq. [15] can be rewritten as

Sincep, andg, have the same norm, it seems appropriate to o
define new operators,, (s = p or q) such that T= 2 Q [19]
Tr(sia) = Tr(l,) = 4 [16] and using

8
ST\ Tr(gd) T 7] (M) =1 + {p codwt) + g sin(wt)}  [20]
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gives the averaged or truncated Hamiltonian (zeroth order term TABLE 2
in a Magnus expansion): Q Interaction Representation of the Spin Operators
in a Basis Diagonilizing I,
Aw ) o
H =", Q+ wrdcode)p —sin(p)q}. ~ [21] (D) Operatorsi. = q.
. 3+
_ o o Ox = N = —Nyo, ® oy withn, = a3
The first order correction in the Magnus expansion is smaller 3 7;
than the zeroth order term by approximately a factapgf w,. Oy = NGy = Nyoz @ o withny = =~ B
Thus, it is usually justified to neglect the correction terms of . n A
higher order than zero (for instancg,: < 100 kHz andv, > 0z = NMn, = N0y @ | withn, = a3

. . v
10 MHz giveswgd v, < 0.01). Except for some factors, this ) )
Nate that then, are not independent sinece = n, — n,

Hamiltonian has the same structure as the NMR truncate
HamiltonianH gy, in the rotating frame of a single spin subjec[z) Operator,, = p.:
to an off-resonance RF field of amplitude: T
Px = NyPry = 3a 8l ® ox+ 1 V@ gy ® Uy}
Hur = Awl, + w{cod @)l + sin(e)l,}. [22] By=np N B, ® o
yEny 3a y y X
To draw a complete analogy, we need the complete commu- P, = NP, = %{_%X ® o+ n\Bo, ® 1
tation relations of the operator se®{ p, g}. In fact, only the
commutator §, p] must be calculated.
The operatorp andq of Eq. [21] are linear combinations of

the p,. or q,, defined in Table 2 (@)% = (N1 = (p)’
Pl = —i(n)*Q
[da 96l + = [Pa, Pel+ =0 if . # B

(3) Main properties:

s = sin(6)cog ¢)N,Syy + sin(0)sin($p)n,s,, + cod6)n,S,, [[qm ps% =0ifa#p
P., Q] = 2iq,
[23] [Q. g.] = 2ip.
wheres = p orq and @, ¢) are the polar angles of the coil axis (A ] = 21(0)°Q

in the PAS (Fig. 1).

Table 2 is a summary of some relations related to t
operatorss, in a basis diagonalizing,. Appendix B indicates Sa
a fast method to compute the matrices defined by Ptajtgs
soon as their expression are known in a basis diagonalizing the
quadrupolar Hamiltonian. We emphasize again that only a little
algebra has to be performed in our formalism, since we only
need to calculate thg, because of the relations of Table 1. So, A(6, ¢)
the cells 1, 3, and 4 of Table 2 are the most important. It may 1
be remarked that only two parametessandn, are necessary = 223
to define theg, and thep.,.. N

It is readily shown that the commutation relationships within X \[An2cos(0) + sin®(0)[9 + n? + 67m co24)].
a set {p., .. Q} are cyclic up to a normalization factor. [25]
Combining these results with those of Table 1 leads to cell 4
where the case of a linear combination of fes studied. The This angular factor is the norm @f andq.
last commutator of cell 4 indicates that],[ p] is indeed These normalized operato€,(Tr[(Q.)?] = 1) fulfill the
proportional toQ. same commutation relations as the Cartesian spin operator:

Thus, we are now able to define a new set of operat@s {

Qy, Qz} by [Q. Q,] = iQ, and cyclic permutations. [26]

Q1A= Sal,
e

>.a,8, fors=porq
Z.(an,)?l,
i2.(a.n.)*Q

N

2
A
[0as Pal

As a consequence, they are also orthogonal with respect to t

q p Q
2" (241 {race

Qx:ﬁ Qy:ﬁ Qz:

where the angular factor = A(6, ¢) is a function of the polar Tr[Q.Qpl =6, fora=x,y, z [27]
angles which specify the orientation of the coil with respect to
the PAS of the EFG. It is given by We stress again that th@, are defined for one orientation of
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TABLE 3
Evolution of the Set of Operators {O., O,, O_} under the Time-Independent Hamiltonian: H, = AwO, + w, {cos(¢) O + sin(¢) O,},
where O. = O, % i0, and the O, Fulfil the Commutation Relations [O,, O,] = iO, and the Other Cyclic Permutations, H, = AwO,
is the Free Evolution Hamiltonian

Evolution under a RF pulse of length Free evolution
A eineral‘ e\Hp(Ae\HU
O, %{2 cogv) + cos’(u)[1 — coqv)] — 2i sin(v)sin(u)} O.e "
O, 0, cogu){sin(u)[1 — cogv)] + i sin(v)}e'®

O_ 3 co(u)[1 — cogv)]le?

O, 3coqu){sin(u)[1 — cogV)] + i sin(v)}e ¢
o, 0, cog(u)cosl) + sin’(u) 0,

O_ $coqu){sin(u)[1 — cogv)] — i sin(v)}e'*

0. %cog(u)[1— cogv)le %
O_ 0O, cos@){sin(u)[1 — cosf)] — i sin(v)}e ¢

O_ }{2cogv) + cos’(u)[1 — cogVv)] + 2i sin(v)sin(u)} 0 e*
Where

v = o is the effective nutation angle
We = VAwZ + w?

[on . Aw
coqu) = . and sirfu) = o
e

e

the PAS with respect to the coil. Expressed on this basis, timann density matrix is proportional tQ:p., ~ Q, so the
secular part of the NQR Hamiltonian during a pulse reads initial condition is taken as

H = AwQ, + X wrfcog{)Q, + sin({)Qy},  [28] p(0) = p(0) = Q,. [32]

where we have shifted the pulse phas€ asm/2 + ¢ to obtain  Hence, it is readily seen from the above considerations that t
the same Hamiltonian &d . This is possible because onlyformalism describing the time evolution of the pure NQR of a spit
the relative phases between the pulses are relevant to thesjg completely analogous to the high field NMR of a single
calculations. We also defined a reduced angular factor jggjated spin irradiated off-resonance, whose truncated Hamilt
A= 2) nian in the rotating frame il (EQ. [22]). It means that under
The signal detected in the coil with a quadrature detectigfe Hamiltonian of Eq. [28], the density matrix evolves only
setup is proportional to the lowpass filtered (LP) signal (or timgijthin a linear combination of the three operato@3.{ Q,, Q_}.
averaged signal over one period of the RF field) Therefore, the corresponding notions of coherence transfer pa
ways of =1 quantum and zero quantum could be used, as well :
s(t) ~ LP[Tr{l.ne “p(t)}] = LP[Tr{(rE)(t)efiwtﬁ(t)}]‘ the yector model for_the se(;, Q,, Q. Moreover, _the phase
cycling of NQR multipulse sequences can be derived from th
[29]  samerules asin NMR, using the selection of coherence pathwa
Noting that Eq. [20] could be rewritten as limited her_e only to the three values-{ 0 1}. _
In practice, the same formula as calculated in NMR could b
— A . used by replacing NMR’s»; by A’ wge and multiplying the re-
(Lm)(t) =r — Ai{Q.e' — Q_e "} [30] sulting expression by'. The basic formula for the time evolution
of a general set@,, O,, O_} are recalled in Table 3.
and that Trpr) = Tr(gr) = 0 results in (we disregarded someThe calculation scheme would be the following:

irrelevant factors) —The contribution of a single coherence pathway is givel

by the product of the factors of Table 3 corresponding to th

s(t) ~ AT (Qx +1Qy)p()} = A'Tr{Q.p(1)}.  [31] coherence jumps or to the free evolution periods.
—The resulting signal is the sum of all the contributions of
In the high temperature approximation, the equilibrium Boltzhe coherence pathways selected by the phase cycling pro
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n=0 1n=0
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FIG. 2. Angular factorA(6, ¢) for different values of the asymmetry parameter. The left side of the figure shows the angular dependeftice stfirface
is the locus of a segment of lengttor all angles ¢, ¢)) whereas the right side is a plot of the probability of having a given valug(all curves are normalized).

dure, which arrive at the coherence level (it is the factor of IV. POWDER AVERAGE OF THE EXCITATION
Q- in the expansion of the density matrix on the basi, { AND DETECTION
Q. Q).

In the case of a powder sample, an average over all then contrast to NMR where the frequency is modulated by th
equally probable relative orientations of the solenoid coil axigystallite orientation, the particularity of pure NQR is that
with respect to the PAS of the EFG should be performed, andly one frequency is observed if the powder sample has on
it is the object of the next section. one quadrupolar site. Therefore, the spectrum width is solely
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a) ally needed to sample the whole space. A much more efficie
tp FID method is to perform the average over the values, afsing the
probability densityg(A) of values ofA. This probability density
— > i can be calculated analytically by using the results of Appendix
+1 of Slichter @). As a matter of fact, we noted that
0
-1 \ 1
A6, ¢) = 1 (R(z, @), (33]
b) ECHO A
tpl tp2
T T where
+1 > 53
—— A=23+7 [34]
! z= —cog#0) [35]
C) ECHO R(z, ¢) = (3 + 77)2 — 129 Sinz(d))

w| | L /\ + z94n% — (3+ )2+ 127 sin(($)]. [36]

+1 — ~ i The probability density of values & being known, we deduce
0 ~C the probability densityg(A) as
-1
() ZAZAD[(AA)Z_ ¢ f} [37]
, 9N =5 AP
d) | ECHO [b] b
tpl T tp2 )
: T with
| >t
+
/ \ _1277
(1) AN f=—p 1 c=@+m?% b=3n-3)(n+1) [39
FIG. 3. Pulse sequences and their coherence pathways. (a) A single p ; : :
sequence }; (b) two-pulse sequencet{} { 6,} giving an echo. §} {2 6} is the lg??d the functiorD(y, f) is defined by
Hahn sequence; (c) Three-pulse sequence of same lesigfro) { 6} giving an
echo. The coherence pathway-® +1 — 0 — —1 is chosen by appropriate 1 y(1-—1)
cycling of pulse phases using the general NMR rules (“stimulated echo” se- y<f f(1-y) (1-yf
quence). The delay between the first and second pulse will determine the echo, D(y, f) = (R y . [39]
whereas the delay between the second and third pulse has no real influence since - 1 f(1 - y)
the zero-quantum pathway is selected (It must be much smaller than the relaxation y T \“Jy( 1-1) (1-"f)y

time T,). (d) Nutation experiment with one or two pulses. The signal is Fourier-

transformed with respect to the first pulse length to obtain the nutation spectrum. . . . .
One can also use a second pulse of fixed angle to obtain an echo. whereK is the complgte elll'ptlc' mtegral of th? first kind®.
The angular variation ok is visualized on Fig. 2 as well as

consequence of a distribution of EFG values and of dipolgze probability densitg(2) for three values of. At 5 = 0,

interactions, simplifying the interpretation of the spectrum. |
fact, the angular factok(0, ¢) affects both the excitation and
the reception, respectively, through th@, ¢)wgs term which

modulates the nutation frequencies of the isochromats ar ' : : .
tion profile being distorted from azimuthal symmetry.

through the signal amplitude facta(6, ¢) which renders the The mini d . | af tivel
amplitude of the signal angular dependent. In some ways, this € minimum and maximum vailues atare, respectively,

situation is analogous to the modulation of the nutation fre-
guencies in NMR by inhomogeneities in the RF field produced
by an irregular solenoid coil.

In powder samples, all angle8g, (¢) are distributed randomly.
The powder average is usually calculated by performing an aver- 1+
age other all crystallites orientations. But this method is rather
time consuming because abouf Hifferent orientations are usu-

ere is no excitation when the coil lies along thaxis of the

AS. The angular character is exactly the same as the spheri
harmonic Y,.,. As n increases, the excitation alormgin-
glgases, whereas it becomes less efficient ajorige excita-

Amin = Lﬁ (coil along thez axis) [40]
3\5'3

w3

a3 (coil along thex axis). [41]
N

)\max

N W
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TABLE 4
Explicit Expressions for the Signal Detected after the One- to Three-Pulse Sequences of Figs. 3a—-3c

One pulse of phase (Fig. 3a): @), — t
S,(0, Ax, t) = {S,, + iS,}e'“e'**" with

A2 A
S = %ﬁ [1— cogbwy)]

1
S = — 2 (wy) [sin(6wy)]

Two pulses (Fig. 3b): ) — 7 — (02),0 — t

Sop(01, 02, 7, AX, 1) = {Sppr + ISpptexdi(2¢, — ) ]exdiAw(t — 7)]  with

A A
S = ) O~ cotbuon 1 - codtuan]
IO T
Sppi = — 4 (wn)? [sin(6;00)][1 — cog6,0y)]

Three pulses (Fig. 3¢):0,1 — 7 — (0)pe — (0)s — t

A4 1
Sopp(0, 7, AX, 1) = u 3 KZK*expli (@, + ¢3 — @) ]exdidw(t — 7)]
4 (wn)

. AX
with K = {w— [1- codbwy)] —i sin(ewN)}.
N
Where

Aw
Ax = P is the dimensionless frequency offset
RF

oy = JAX* + (A')? and6; = wet; the flip angle of pulse numbér
A" = 2A(0,¢) is defined in the text, Eq. [25].

Note.For a powder sample, an average over the range of valugssifould be performed as explained in the text.

The divergence of the probability densigyA) or of the nuta-  So, the problem of computing a powder average reduces
tion spectrum comes from the contribution of crystallitethe numerical integration of Eq. [43]. We found that it is
whosey axis lie along the coil, and occurs at enough to sample the rangeXo¥alues over 100 points in order
to get accuracy, instead of performing a double integratio
over more than 10points in the conventional method.

n
3t73 _
Agy = > . (coil along they axis). [42]
3\3 V. THEORETICAL AND EXPERIMENTAL STUDY
OF ONE- TO THREE-PULSE SEQUENCES
The powder average of sign§(t, A) is then FOR POWDER SAMPLES
Amax It is not obvious at first sight whether the strategies deve
(S(t, 1)) = g(A)S(t, A)dA. [43] oped in NMR to optimize pulse sequences are also valid in tt

Amin pure NQR of a powder sample because of the angular avera

over both the excitation and the reception. Therefore, in ords

The angle brackets indicate an average over the probabilityillustrate the methods developed in the last two sections, v
densityg(A). will draw a comparison of the relative efficiencies of the
Note that the mean valu@) ~ 0.686 and second momentsequences depicted on Fig. 3 by considering briefly the effe
(\?) =~ 0.5, as obtained by numerical integration, are almosf the pulse length and off-resonance irradiation on the sign
independent of the asymmetry parameter. Thus, these quaatiplitude, the excitation bandwidth, and phase linearity. W
ties cannot be used to get information on the asymmetnjll also study the shape of the nutation spectra obtained wit
parameter. the sequences of Fig. 3d. The simulations are compared
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FIG. 4. (a) Experimental and simulated maximum of the spectrum of the high frequency line of Chloranil obtained with a single pulse of varying |
applied on resonance. The stars (*) are the experimental values and the continuous line is the best fit obtained fromms. (42). (The resulting radio
frequency power i =~ 12.5 kHz. (b) Simulated signal amplitude aff{for different pulse angles and reduced frequency offset= A w/wge. On resonance,
solid line; off resonance, dashed lide = 0.5 and dash—dot linéx = 1. (c) Effect of the pulse angle for the four sequences studied in the text, with irradiatit
on-resonancer( = 0.5; pulse anglé® = wgt,). Dashed line, single puls&}; Dash—dot line, two-pulse echo sequen@? { 6}; Continuous line, three-pulse
stimulated echo sequencé}l{{ 6} { 6}; Dotted line and+, Hahn-echo sequenc#¥{2 6}.

experimental results obtained with Chloranil at ambient terdetected by a single pulse and it gives a good signal at lar
perature. frequency offsets. It was used without purification. Chlorani
*Cl is a typical spin = 3 nucleus, with a Zeeman splitting has two*Cl lines around 36.855 and 36.785 MHz, dependin
of ~30 MHz in a~7 T field and quadrupolar energies obn temperature, with asymmetry parameter~ 0.2 almost
covalently bound CI being roughly in the interval30—40 equal for the two lines (see howevedf). The line width at
MHz. As a model compound, we choose powder Chlorarillf height is a few kHz, and is inhomogeneous because a hc
(Aldrich), because its line width is sufficiently small to becan be burnt into the line with a long saturating pulse.
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FIG. 5. Constant echo amplitude lines of a two-pulse echo sequeig b.} with respect to their effective angley = wxe t,,. Irradiation is assumed
on resonance, angl= 0.2. (a) The set of dashed isoclines corresponds to a negative signal. (b) The range of valissxdénded to cover nutation experiments
using an echo to detect the signal (Fig. 3d).

All experiments were performed on a Bruker ASX 300 a20 us (a time much smaller than,;Tand about twice as long as
ambient temperature, with the static Bruker probe lying at leabe dead time).
5 m away from the~7 T magnet (we checked that the residual The complete expressions of the outcomes of sequences
static field at this distance was comparable to the EarthHgs. 3a—3c, with respect to time counted from the end of th
magnetic field with a Gauss meter. Experimentally, the distdast pulse, the dimensionless frequency offset and the pul
tion of the spectrum by the splitting of the pure NQR energgngles can be found in Table 4. The expressions of Table
level is small enough to be undetectable). All spectra weweere obtained by means of the calculation scheme proposed
acquired with quadrature detection. The probe full bandwid®ection Ill, and are in agreement with referenckef énd (L6)
at half height was roughly-400 kHz. The delay between thefor single and two pulse sequences, and with referebcéo(
two last pulses of sequencél{ 0} { 6} was arbitrarily set to the three-pulse sequence, although our result is more genera
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FIG. 6. Simulated nutation spectra for different values of the asymmetry parameter. On the left side are sketched the single pulse nutation experim
the right side, a second pulse of lengthis added to get an echo: solid lin@, = 6y; dashed linep, = 26y. All spectra are normalized; = 0.5.

the last case. The powder average, although performed for tiigere all phase factors have been set to unity @Rdwegt, is
simulations, is not indicated to clarify notations.

On resonance, the signal amplitude simplified as

!

S,(0) = % sin(A'0)

!

Sy61, 02) = 5 [SinA"6)][1 — cosA"6,)]

!

A
Sopr(0) = 7 sin®(A'9),

the pulse “nutation angle.” These amplitudes are all propo
tional toA’. The NMR case corresponds 16 = 1.

The first point we deal with is the optimization of the pulse
length to give the maximum signal. For on-resonance irradie
tion, the signal amplitude of a single pulse sequence is mo
ulated by a sine function of the pulse lengthin both NMR
and NQR (Eqg. [44]). Hence, the maximum occurs when th
effective total pulse angle is such théb = /2. In NQR, this
condition can only be rigorously achieved for a given crystal
lite or a monocrystal. For a polycrystalline sample, the resuls
ing function is no more a sine function of the pulse length (Fig
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Modulus in Arbitrary Units

Reduced Frequency Offset

FIG. 7. Simulated excitation bandwidth of the four sequences studied in theriext@.2). The reduced frequency offsetAx = Aw/wge. Dashed line,
{6u}; dash—dot line, Py} { 6u}; continuous line, P} { 6u} { Ou}; dotted line with +, {6y} {2 6,,}; dotted line, {6/2} { 6}

4a). The maximum signal is observed at pulse artglede- To get further insight in the behavior of the echo se:
fined by quence P,} { 6,}, we also plotted the lines of constant echo
magnitude in Fig. 5a. The curves are elongated quasi-ellips
11w T along theo, axis, centered aroun@, = 6,, ~ 57.5” andf, ~
Om =~ B2° 0.645. [47]  115°, the ratiod,/6, being roughly 2, like in NMR. The line at
v 95% of maximum signal indicates that the maximum is rathe
This value is smaller tham/2 because the scaling factoxs Proad, showing that a large range of angle values gives a go
render the nutation of isochromats more efficient on averagdna! _ _
than in the case of NMR: indeedl, = 1 for NMR whereag\’) In the experiments described below, the pulse angle was t
~ 1.4 for NQR. As illustrated by Fig. 4a, the comparison of thB1ain variable, as in nutation experiments (Fig. 3d). In fact, th
experiments and the simulation is rather good. The value of ti&Periment to optimize the signal amplitude is a nutatio
radio frequency power as defined by Eq. [28] was obtain&xPeriment stopped at short pulse lengths. The nutation spe
with a least square fitting procedure and gaye~ 12.5 kHz. trum is obtained by the sine-Fourier-transform of the signe
Irradiating off-resonance decreases slightly the pulse angle2gtPlitude with respect to the first pulse length.
which the maximum signal occurs, as well as signal intensity, but The problem of choosing the second pulse angle arises. T
the effect is rather small even for resonance offsetsof 0.5.  experimenter would certainly intuitively choosg ~ 26y,
Figure 4c compares the outcomes of pulse sequenceswhich corresponds to the optimized effective pulse” for the
Figs. 3a—3c for different pulse angles with irradiation orHahn-echo sequencég} {2 6,}. As shown by Fig. 5b, which
resonance. The maximum signal is observed at almost the sd#@n extended version in tite direction of Fig. 5a, this choice
pulse angled,, for sequencesd}, { 6} {2 6}, and {6} { 6} { 6}, Seems to be good because the horizontal line drawn éom
whereas it is shifted to higher values for th@ { 6} sequence, 260y almost cross all the centers of the ellipses. We will shov
as in NMR. The signal vanishes for all sequences at the sahgdow that this choice also minimizes the distortion of the
angle. Unlike the case of NMR, the maximum signal of tAg { spectrum as compared to a single pulse nutation spectru
{2 6} sequence is slightly less than the one of tl#& §equence, Note that the signal decreases below 10% of the maximu
because all the isochromats are not refocused exactly. Bignal whens, = 900°, indicating that longer nutation pulses
pulse angles smaller thaky, the sequenced} { 6} { 6} is more are useless (provided that arcing or heating have not stopp
efficient than the sequenc@}{ 6}. the experiment before that value).
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FIG. 8. Experimental and simulated excitation/reception bandwidth of different pulse sequences.$&)dle pulse of 13s; (*) Hahn sequencetf {2 6}
with 6 ~ 13 us. (b) (*) two-pulse echo sequence}{ 6}; (+) Three-pulse sequencé¥{ 6} { 6} with coherence pathway 8-1 0 —1. All pulses have the same
length (13us). The solid lines are the theoretical results with ~ 12.5 kHz,n = 0.2. All the amplitudes are normalized to one.

The results of Section IV allow us to determine the analyt- So far, we have mainly considered that the irradiation wa
ical expression of the nutation spectrum. If wexet v/2vg, performed exactly on-resonance. But off-resonance effec

then the spectra are proportional to cannot be neglected in real experiments where the width of tl
spectrum may be rather large-100 kHz). The acquisition of

Fru(X) ~ xg(X) (48] broad spectra is then limited by t.he eXC|tat|9n bandwidth of th

pulse sequence because the highest available RF powers

Frud X) ~ Xg(x)[1 — cog260,X)], [49] not infinite (currently, the RF powers are a few tens of kHz)

The main effect that can be observed is a deformation in tt
where the probability density(x) is given by Eq. [37]. The shape of the spectrum, which becomes only severe when t
first expression corresponds to a single pulse excitatidR POWer is less than or of the order of magnitude of th
whereas the second expression comes from a two-pulse ngRgctrum full width. In general, a large excitation bandwidtt
tion sequence with a second pulse of flip-angle= wgety,. a0 only be achieved at the expense of either a reduction of t
Such spectra appear in Fig. 6. It turns out that the shapes of $i@hal to noise ratio or an increase of the experiment duratio
spectra obtained from the two sequences are very similar forlgnce, a compromise should be found. For very broad lines,
given asymmetry parameter whépn ~ 26,,. As remarked by reconstruction scheme has been propod€ to retrieve the
Harbison (3), the singularities are obviously at the samé@ll spectrum by adding truncated subspectra acquired from
values ofx for both sequences. The proposed analytical exegularly spaced set of irradiation frequencies which covers tt
pressions can be useful to perform a least-square fitting of thbole spectrum width.
experimental spectra. This approach could be extended to thélevertheless, some situations require a uniform excitatic
case of off-resonance spectra. over the entire spectrum. A rapid inspection of the expressiol
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FIG. 9. Simulated modulus and phase of the excitation profiles as a function of irradiation frequency offset for different pulse angles, (n = 0.2).
(a) Sequenced}; (b) sequence §} { 6}; (c) sequence §} { 6} { 6}. Continuous line,0 = 0,,; dashed linep = 0y/2; dash—dot linep = 26,. The reduced

frequency offset iAX = Aw/wge.

of Table 4 indicates that the excitation bandwidth is limited byot recommended because it gives the weakest signal. /
the longest pulse. Since the most favorable situation concetimough not presented, we remark that the efficiencyodf {0}
ing the signal amplitude occurs when the first pulse is séf;to {6} is the best for a pulse angle set o= 6. If we draw a
the other pulse lengths could not exceed this value to keeg@mparison between echo sequences having the same me
large excitation bandwidth. For this reason, we limited oumum pulse length, then the “stimulated ech®y} { 6y} { 6m}
study to the §} { 6} and the {6} { 6} { 6} “stimulated” echo has the more uniform excitation profile.

sequences. These simulations were also compared to experimental da
Figure 7 compares the excitation profile of different sekeeping the same RF power value as in Fig. 4b, since all tt
guences as a function of frequency offset. The single pulsgperimental conditions were the same. Note that the data he
{6u} has obviously the largest bandwidth. Among all the echootbeen corrected from the attenuation due to the resonant circt
sequences, the6{} {2 04} sequence gives obviously theWe found a very good agreement between the simulations and
smallest bandwidth, but the largest signal. The secondary maxperiment for all sequences, as indicated by Fig. 8.
ima of sequencesof;} { 6y} and {6y} { 6u} { Ou} are almost ~ An overestimation of the excitation bandwidth could be
unobservable, the last sequence giving a flatter profile than titgtained by the first zero of the modulus of the respons
{6u} { Ou} sequence. The Hahn-type sequenég/g} { 6} is  function in terms of the frequency offset. For a giver(which



254 CHRISTOPHE ODIN

means a given orientation when the sample is a monocrystalyery NQR multipulse sequence. A particular attention wa
the signal is zero at frequency offset devoted to the powder average, which was transformed fro
an average over a two-dimensional grid of angles to a on

Ave 1 dimensional average over the probability density of the angul:

o= \/(th)z — (A2 [50] factor, leading t(_) a drastic d_ecrease pf S|mulat_|pn t|mes_. More

RF REP over, the analytical expression of this probability density wa

derived, as well as the expressions of the corresponding nu

Eor a powder sample_, one must_ take into account the diStm?H)'n spectra. To our knowledge, this is the first time such a
tion of A’ and no evident solution was found. However, agpproach is applied to NQR and such analytical expressions

approximate solution valid for low RF power can be obtaine iven

flzceﬂt]hef_orgir of mat?]thdi (;f p?rart“e‘?‘?f”s 0”2 (1)‘/ %f Applications of these procedures to the study of the optimi
4), the first term in the root dominatas if e - zation and frequency response of one to three-pulse sequen

According fo this approximation, the first zero is roughl ere explicitly discussed and compared to some experimer
independent of the RF power and of the powder average an Sformed on Chloranil. A three-pulse “stimulated echo” se

located at quence allowing a flatter excitation profile than the traditiona
two-pulse echo sequences was proposed for powders a
_ i checked experimentally. A more general study of broadbar
Avg= = . [51] . . .
2t, pulse sequences will be the subject of another article.
If t, = 10 ws, then the maximum excitation bandwidth is APPENDIX A

2Av, ~ 100 kHz and the RF power should bg- < 50 kHz.

This approximation is usually valid. As a matter of fact, very We use the spig Pauli matrices, defined as

low temperature experiments are usually performed under He-

lium gas, and very low RF powers are necessary to prevent 1 0 0 1 0 —i

arcing. For instance, the range of powers accessible with our o, = (0 —1) o, = (l 0) oy = ( i 0 ) [A1]
spectrometer and probes without arcing are typically lower

than 15 kHz. In the range of validity of this approximation .
increasing the RF power only increases the magnitude of figme well-known properties are

secondary lobes of the excitation profile.

Considering the modulus of the signal is not sufficient, (o)?=l,anda =X, Y, z [A2]
because the phase can only be corrected if it varies linearly
with the frequency offset. An illustration of the effect of the
pulse length on the excitation profile and phase linearity can be [0., 0g]l: = 0 anda # B. [A4]
found on Fig. 9. Regardless of the pulse sequence, the range of
linearity of the phase increases as the pulse angle decreagfs.aiculations in the text are simplified by use of the follow-

When the pulse angle is set t@@(giving an effective mean inc}; properties of the Kronecker product
NQR 7 pulse), the signal amplitude vanishes at resonance, bu

off-resonance signal amplitude may be large.

o400y, = ig, and the cyclic permutations [A3]

(A ® B)(C ® D)= (AC) ® (BD) [A5]
CONCLUSION TH(A ® B) = Tr(A)Tr(B). [A6]

Throughout this article, we tried to show that pure NQR of
spinl = £ could be apprehended in a manner very similar to
the framework of the high field NMR of an isolated single spin.

To draw this analogy, we explored tlgzinteraction repre-
sentation formalism of an operator which is its own inverse a
applied it to the pure NQR of spih = 3. This formalism
greatly simplifies the cumbersome calculations given by Pratt
in his pioneering article 1(1), by clearly pointing out the
general properties of the transformed operators. For instance, A= <a1 aZ) [B1]
only two parameters are needed, and only three matrices in the a3 a4)’
basis of the Cartesian operators had to be calculated. By means
of this analogy with NMR, we were able to calculate thevhereai are 2xX 2 matrices, one easily shows that the matrice
general propagator formula needed to calculate the response,iop,, andg, are

APPENDIX B

In the basis which diagonalizes the quadrupolar Hamilto
nian, theQ matrix is obviously represented by the following
rﬂfﬁ)necker productQ = o, ® I,.

Thus, ifA'is a 4 X 4 bloc matrix written as
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_(al o (0 a2 (0 -a2 7
""={0 a4) Pr={az3 0) 9%=""Na3z o0 ) .
B2]

As a consequence, the matrices introduced by Prajtqould
be retrieved by direct inspection of the matrix representation of
the spin operators in the basis of the eigenfunctions of tr118_
quadrupolar Hamiltonian.
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